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A wide variety of numerical methods for gasdynamic simulations has
been developed up to date. An original class of methods is related to the
construction of regularized (quasi-gasdynamic) systems of equations and
their subsequent discretization. A detail description of this approach can be
found in monographs of B. Chetverushkin and T. Elizarova, etc. One of its
advantages is the simplicity of the corresponding parallel implementation.
The law of nondecreasing entropy plays a key role in both physical and
mathematical theory of gas dynamics equations, namely,
the Euler equations for an inviscid non-heat-conducting gas and
the Navier–Stokes equations for a viscous heat-conducting gas.
In numerical methods aimed at gasdynamic simulations, the control of total
entropy behavior is also an important issue of theory and practice subjected
to the growing interest recently.
But the discrete law of nondecreasing entropy is rather frequently
overlooked in the development of numerical methods.
This is caused both by the complexity of its derivation and by rather
specific requirements imposed on the methods to be constructed.
The similar situation is concerning the law of non-increasing energy for
the simplified barotropic systems that we begin with.
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The classical barotropic Euler and Navier-Stokes systems of equations
describing 1D flows of a gas/fluid consist in the following mass and
momentum balance equations respectively for the inviscid and viscous cases

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = ρF

and

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = ∂xΠ + ρF.

Hereafter ∂t and ∂x are partial derivatives in t > 0 and x ∈ [0, X].
The sought functions ρ > 0 and u are the density and velocity of a gas,
and p = p(ρ) is the pressure; normally p′(ρ) > 0.
The Navier-Stokes viscous stress is given by

Π = ν∂xu.

Here F is the density of a given body force and ν = ν(ρ) > 0 is the scaled
viscosity coefficient.
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The regularized barotropic (quasi-gas dynamics) Euler system of equations
in 1D case consists in the following mass and momentum balance equations

∂tρ+ ∂xj = 0, (1)
∂t(ρu) + ∂x(ju+ p) = ∂xΠ + ρ∗F. (2)

The regularized mass flux is given by

j = ρ(u− w), w = ŵ +
τ

ρ
u∂x(ρu), ŵ =

τ

ρ
(ρu∂xu+ ∂xp− ρF ) (3)

and includes the regularizing velocity w and the relaxation parameter τ > 0.
The regularized viscous stress and the density are defined by

Π = ν∂xu+ ρuŵ + τp′(ρ)∂x(ρu), ρ∗ = ρ− τ∂x(ρu). (4)

The Euler system (µ := 0 and τ := 0) has the hyperbolic type,
the Navier-Stokes system (τ := 0) has the composite hyperb.-parabolic
type and the regularized system has the parabolic type.
Note that it is clear from (3) that more compact form of w is possible:

w =
τ

ρ
(∂x(ρu2 + p)− ρF ).
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We need the function

P0(r) :=

ˆ r

r0

(r − s) p
′(s)

s
ds, r > 0,

where r0 > 0 is a parameter, and its derivative (known as the enthalpy)

h(r) ≡ P ′0(r) =

ˆ r

r0

p′(s)

s
ds =

p(s)

s

∣∣∣∣r
r0

+

ˆ r

r0

p(s)

s2
ds, r > 0.

If p′(r) > 0 for r > 0, then also P0(r) > 0 for r > 0 and P0(r0) = 0.
In the adiabatic case, where p(r) = p1r

γ with γ > 1, one can set r0 = 0,
then

P0(r) =
p1

γ − 1
rγ , h(r) =

γp1

γ − 1
rγ−1.

In the isothermic case, where p(r) = p1r, one can set r0 = 1, then

P0(r) = p1(r ln r − (r − 1)), h(r) = p1 ln r.

Assume that the density of the body force has the form

F (x, t) = ∂xΦ(x),

where ∂xΦ is the density of the stationary potential body force.
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For the regularized barotropic system of equations (33)-(4), the following
energy balance equation holds

∂t
(
P0(ρ)− ρΦ + 0.5ρu2

)
+ ∂x

{
j
(
h(ρ)− Φ + 0.5u2

)
−Πu

}
+ν(∂xu)2 + τ

p′(ρ)

ρ
{∂x(ρu)}2 + τρ{u∂xu+ ∂xh(ρ)− ∂xΦ}2 = 0. (5)

On the left, the 2nd term has the spatial divergent form, and for p′ > 0 the
3rd (Navier-Stokes) term and 4th and 5th (relaxation) terms are
non-negative.
The last property remains valid for ν > 0 and τ > 0.
Notice that, for the equilibrium solutions ρ = ρS(x) > 0 and u = 0, the
barotropic QGD system (33)-(4) reduces to the equation

∂xp(ρS) = ρS∂xΦ on (0, X),

or, equivalently, to the equation

h(ρS(x)) = Φ(x) + C on [0, X], (6)

the same as for the equilibrium solutions to the compressible barotropic
Navier-Stokes equations. Under some assumptions it allows to find ρS .
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Define on [0, X] an arbitrary nonuniform mesh ω̄h with the nodes
0 = x0 < x1 < · · · < xN = X and steps hi = xi − xi−1.
Let hmax = max

16i6N
hi. Define also an auxiliary (conjugate) mesh ω∗h with

the nodes xi+1/2 = (xi + xi+1)/2, 0 6 i 6 N − 1, and steps
ĥi = xi+1/2 − xi−1/2 = (hi + hi+1)/2.
Let H(ω) be the space of functions defined on a mesh ω.
For v ∈ H(ω̄h) and y ∈ H(ω∗h), introduce the operators of averaging, shift
of the argument and difference quotients

[v]i+1/2 = 0.5(vi + vi+1), (v±)i+1/2 = vi+1/2±1/2, δvi+1/2 =
vi+1 − vi
hi+1

,

[y]∗i =
hiyi−1/2 + hi+1yi+1/2

2ĥi
, δ∗yi =

yi+1/2 − yi−1/2

ĥi
.

Clearly [·], (·)±, δ: H(ω̄h)→ H(ω∗h) and [·]∗, δ∗: H(ω∗h)→ H(ωh), where
ωh = {xi; 1 6 i 6 N − 1}.
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We need the following elementary counterparts of the formula for the
derivative of the product of functions

δ(uv) = δu · [v] + [u]δv, (7)

δ∗(y[v]) = δ∗y · v + [yδv]∗, (8)

where u ∈ H(ω̄h). To reduce the amount of brackets, we suppose that, for
example, δu · [v] = (δu)[v] (i.e., the sign · cancels the action of the
preceding operators from the left).
We also need the formula

[y]∗v =
[
y[v]

]∗ − 0.25δ∗(h2
+yδv). (9)
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Let p′ > 0. We construct the following semi-dicrete mass and momentum
balance equations

∂tρ+ δ∗j = 0, (10)

∂t(ρu) + δ∗(j[u] + [p]) = δ∗Π + [ρ∗F ]∗ (11)

on ωh. Here we use the following discretizations of the mass flux

j = [ρ]p([u]− w), (12)

w = ŵ +
τ

[ρ]p
[u]δ(ρu), ŵ =

τ

[ρ]p
([ρ]p[u]δu+ δp− [ρ]pF ), (13)

the viscous stress

Π = νδu+ [ρ]p[u]ŵ + τ p̃′(ρ)δ(ρu), (14)

the regularized density and the body force

ρ∗ = [ρ]p − τδ(ρu), F = δΦ, with Φ = Φ(x). (15)
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The main sought functions ρ > 0 and u together with p and Φ are defined
on the main mesh ω̄h whereas the functions j, w, ŵ, Π, ρ∗, τ and ν are
defined on the conjugate mesh ω∗h.
Here together with the simplest averages [ρ] and [u] we apply the
nonstandard averages ρ and p′(ρ)

[ρ]p =


p(ρ+)− p(ρ−)

h(ρ+)− h(ρ−)
for ρ+ 6= ρ−

ρ− for ρ+ = ρ−

,

p̃′(ρ) = [ρ]h(ρ−; ρ+).

on ω∗h. Hereafter g(α;β) is the divided difference for a function
g ∈ C1(0,+∞)

g(α;β) =
g(β)− g(α)

β − α
for α 6= β, g(α;α) = g′(α), α > 0, β > 0.

These averages are two-point and symmetric (as the simplest ones) and
thus have the O(h2

max) approximation order for twice differentiable
functions ρ and p = p(r).
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The formula for [ρ]p can be rewritten as

[ρ]p =
p(ρ−; ρ+)

h(ρ−; ρ+)
.

Note that according to the Cauchy mean value theorem we have

min{ρ−, ρ+} < [ρ]p < max{ρ−, ρ+} for ρ− 6= ρ+.

Moreover, in the adiabatic case the defined averages take the form

[ρ]p =
γ − 1

γ

ργ+ − ρ
γ
−

ργ−1
+ − ργ−1

−
, p̃′(ρ) =

γp1

γ − 1

ρ− + ρ+

2

ργ−1
+ − ργ−1

−
ρ+ − ρ−

for ρ− 6= ρ+,

and they become the standard ones in the particular case

[ρ]p = [ρ], p̃′(ρ) = 2p1[ρ] for γ = 2.

In the isothermic case the defined averages take the form

[ρ]p =
1

ln(ρ−; ρ+)
, p̃′(ρ) = p1[ρ] ln(ρ−; ρ+) = p1

[ρ]

[ρ]p
.
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Let us compare the defined averages with the standard or more simple
ones. To this end notice that the divided difference has the following
integral representation

g(α;β) =

ˆ 1

0
g′(α(1− s) + βs) ds. (16)

It implies that (in virtue of the Jensen inequality and the definition on
convexity), for the convex function g′, the following inequalities hold

g′
(
α+ β

2

)
6 g(α;β) 6

g′(α) + g′(β)

2
;

for the concave g′, the opposite inequalities hold.
The lower and upper bounds are the midpoint and trapezoid quadrature
rules for integral (16) (the inequalities hold also according to the
geometrical sense of these rules).
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In the adiabatic case, the following integral representations hold

[ρ]p =

ˆ 1

0

[
ργ−1
− (1− s) + ργ−1

+ s
] 1

γ−1
ds,

p̃′(ρ) = γp1[ρ]

ˆ 1

0
[ρ−(1− s) + ρ+s]

γ−2 ds.

Therefore in virtue of the above inequalities we get

[ργ−1]
1

γ−1 6 [ρ]p 6 [ρ] for 1 < γ 6 2,

[ρ] 6 [ρ]p 6 [ργ−1]
1

γ−1 for γ > 2,

together with

γp1[ρ]γ−1 6 p̃′(ρ) 6 γp1[ρ][ργ−2] for 1 < γ 6 2 or γ > 3,

γp1[ρ][ργ−2] 6 p̃′(ρ) 6 γp1[ρ]γ−1 for 2 6 γ 6 3.
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Since

ln(ρ−; ρ+) =

ˆ 1

0

1

ρ−(1− s) + ρ+s
ds,

in the isothermic case we find

ρ−ρ+

[ρ]
6 [ρ]p 6 [ρ], p1 6 p̃′(ρ) 6 p1

[ρ]2

ρ−ρ+
.

In the practical implementation of the defined averages, to avoid loss of
accuracy for ρ+

ρ−
≈ 1, instead of the definitions it is required to apply one or

another their approximation, for example, by means of the Taylor expansion
in powers of ρ+ρ− − 1 or, better, a quadrature rule to compute representing
integrals like (16).
Note that also the following formula holds

[δp]∗i = δ∗[p]i =
pi+1 − pi−1

2ĥi
. (17)

representing the central difference quotient.
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Discuss an important property of method (25)-(10). For the equilibrium
solutions ρ = ρS(x) > 0 and u = 0 it is reduced to the equations

δ∗{τ(δp(ρS)− [ρ]pδΦ)} = 0, δ∗[p(ρS)] = [[ρ]pδΦ]∗ on ωh.

The first equation implies

δp(ρS)− [ρ]pδΦ =
C0

τ
on ω∗h, with C0 = const,

and in virtue of the above formula [δp]∗ = δ∗[p] the second one can be
rewritten as

[δp(ρS)− [ρ]pδΦ]∗ = 0,

whence C0 = 0. Therefore

δp(ρS) = [ρ]pδΦ on ω∗h.

In virtue of the definition of [ρ]p the last equation takes the form

δ(h(ρS)− Φ) = 0 on ω∗h,

thus
h(ρS) = Φ + C on ω̄h, with C = const. (18)

This is the mesh counterpart of the above result for the original system.
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Theorem (the discrete energy balance equation)

For the discrete in space method (25)-(10), the following energy
balance equation holds

∂t
(
P0(ρ)− ρΦ + 0.5ρu2

)
+δ∗ {j (h(ρ)− Φ + 0.5u−u+)−Πu+Bh}

+
[
ν(δu)2 + τh(ρ−; ρ+) {δ(ρu)}2 + τ [ρ]p{[u]δu+ δh(ρ)− δΦ}2

]∗
= 0,

where Bh = −0.25h2
+(δp− ρ∗δΦ)δu.

In it all the three summands under the averaging sign [·]∗ on the left are
non-negative.

The last property remains valid for ν > 0, τ > 0 and p′ > 0 (after replacing
in the definition of p̃′(ρ) the comparison ρ− 6= ρ+ by h(ρ−) 6= h(ρ+)).
Clearly the term u−u+ in the spatially divergent summand is the geometric
mean for u2. Below we show how it appears.
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Proof. To illuminate the origin of the above averages [ρ]p and p̃′(ρ) and to
demonstrate imbalances appearing for other averages, we consider the
method like (25)–(25) but with the following more general expressions for
j, w, ŵ, Π and ρ∗:

j = [ρ]1([u]− w),

w = ŵ +
τ

[ρ]2
[u]δ(ρu), ŵ =

τ

[ρ]2
([ρ]2[u]δu+ δ̂p− [ρ]2F ),

Π = νδu+ [ρ]3[u]ŵ + τ p̂′(ρ)δ(ρu),

ρ∗ = [ρ]4 − τδ(ρu),

where [ρ]1 – [ρ]4 and p̂′(ρ) are any averages for ρ and p′(ρ), аs well as δ̂p
is a discretization of ∂xp at the nodes of ω∗h (more general expressions
could be also analyzed).
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As usual, the derivation of the difference energy balance equation is the
difference counterpart of the derivation of the above differential energy
balance equation (5).
First we multiply the above mass balance equation ∂tρ+ δ∗j = 0 by
h(ρ)− Φ. Since

δ∗j · (h(ρ)− Φ) = δ∗
(
j[h(ρ)− Φ]

)
− [jδ(h(ρ)− Φ)]∗

according to formula (22), we get

∂t(P0(ρ)− ρΦ)

+δ∗(j[h(ρ)− Φ])− [[ρ]1(δh(ρ)− δΦ)}([u]− w)]∗ = 0. (19)
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We also multiply the above momentum balance equation
∂t(ρu) + δ∗(j[u] + [p]) = δ∗Π + [ρ∗F ]∗ by u. We use the formula

∂t(ρu) · u = 0.5∂t(ρu
2) + 0.5∂tρ · u2,

apply the mass balance equation and twice the formula
δ∗(y[v]) = δ∗y · v + [yδv]∗ and find

∂tρ · u2 = −δ∗j · u2 = −δ∗(j[u2]) + [jδ(u2)]∗,

δ∗(j[u]) · u = δ∗(j[u]2)− [j[u]δu]∗.

Then taking into account the elementary formulas

[u]2 = 0.5[u2] + 0.5u−u+, 0.5δ(u2) = [u]δu (20)

together with the above formula [δp] = δ∗[p], we get the equality

0.5∂t(ρu
2) + 0.5δ∗(ju−u+) + [δp− ρ∗δΦ]∗u− δ∗Π · u = 0.
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We add it and the above equality (19) containing P0(ρ)− ρΦ.
In virtue of the above formulas [y]∗v =

[
y[v]

]∗ − 0.25δ∗(h2
+yδv) and

δ∗(y[v]) = δ∗y · v + [yδv]∗ we respectively obtain

[δp− ρ∗δΦ]∗ · u = [(δp− [ρ]4δΦ + τδ(ρu) · δΦ)[u]]∗

−0.25δ∗
(
h2

+(δp− ρ∗δΦ)δu
)
,

δ∗Π · u = δ∗(Π[u])− [Πδu]∗.

Therefore we derive

∂t
(
P0(ρ)− ρΦ + 0.5ρu2

)
+ δ∗(A+Bh)

+ [[ρ]1(δh(ρ)− δΦ)w + τ [u]δ(ρu) · δΦ + Πδu+Dh]∗ = 0,

with the above defined quantity Bh and

A = j (h(ρ)− Φ + 0.5u−u+)−Πu,

Dh = (δp− [ρ]1δh(ρ))[u] + ([ρ]1 − [ρ]4)[u]δΦ.

Clearly the imbalance Dh = 0 in the case [ρ]4 = [ρ]1 = [ρ]p.
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We remind the definitions of w and Π and rewrite the last equality as

∂t
(
P0(ρ)− ρΦ + 0.5ρu2

)
+ δ∗(A+Bh) + [ν(δu)2 + Ψ(ρ, u) +Dh]∗ = 0,

(21)

where we set

Ψ(ρ, u)

:= [ρ]1(δh(ρ)− δΦ)w + τ [u]δ(ρu) · δΦ + {[ρ]3[u]ŵ + τ p̂′(ρ)δ(ρu)}δu

= [ρ]1(δh(ρ)− δΦ)w + [ρ]3[u]δu · ŵ + τδΦ · [u]δ(ρu) + τ p̂′(ρ)δ(ρu) · δu.

Applying the formulas

w = ŵ +
τ

[ρ]2
[u]δ(ρu), ŵ = τ

(
[u]δu+

δ̂p

[ρ]2
− δΦ

)
,

we transform Ψ(ρ, u) to the form
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we transform Ψ(ρ, u) to the form

Ψ(ρ, u) = {[ρ]1(δh(ρ)− δΦ) + [ρ]3[u]δu}ŵ

+τ
[ρ]1
[ρ]2

δh(ρ) · [u]δ(ρu) + τ p̂′(ρ)δ(ρu)δu+ τ

(
1− [ρ]1

[ρ]2

)
δΦ · [u]δ(ρu)

= τ [ρ]1

{
[ρ]3
[ρ]1

[u]δu+ δh(ρ)− δΦ
}{

[u]δu+
δ̂p

[ρ]2
− δΦ

}

+τδ(ρu)

{
[ρ]1
[ρ]2

h(ρ−; ρ+)δρ · [u] +
p̂′(ρ)

[ρ]
[ρ]δu

}

+τ

(
1− [ρ]1

[ρ]2

)
δΦ · [u]δ(ρu).

Let the equalities

[ρ]3 = [ρ]1 = [ρ]2, δ̂p = [ρ]2δh(ρ), p̂′(ρ) = [ρ]h(ρ−; ρ+)

be valid as in method (25)-(10).
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Then using also the above formula δρ · [u] + [ρ]δu = δ(ρu) the quantity
Ψ(ρ, u) becomes the sum of squares

Ψ(ρ, u) = τ [ρ]1 {[u]δu+ δh(ρ)− δΦ}2 + τh(ρ−; ρ+){δ(ρu)}2.

Thus we pass from (21) to the energy balance equation in Theorem.

The derived discrete energy balance equation is the mesh counterpart of the
differential energy balance equation (5) conserving the non-negativity of the
corresponding summands. This is an essential issue and guarantees validity
of the law of non-increasing total energy (under suitable additional
conditions, in the simplest case, under periodicity of the solution in x).
Note that the term δ∗Bh is the additional summand with respect to the
differential case and represents the spatially divergent mesh imbalance.
It satisfies the estimate Bh = O(h2

max) for bounded functions ρ > 0 and u
of the continuous arguments having the bounded derivatives ∂xρ, ∂xu and
for bounded τ and ∂xΦ.
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Remark. One can replace [ρ]p by the simplest one [ρ] in all the equations
but together with replacing
δ∗[p] by [δ̃p]∗ with δ̃p = [ρ]δh(ρ) in the momentum balance equation:

∂t(ρu) + δ∗(j[u]) +
[
[ρ]δh(ρ)

]∗
= δ∗Π + [ρ∗F ]∗

and δp by δ̃p in the formula for ŵ:

ŵ =
τ

[ρ]
([ρ][u]δu+ [ρ]δh(ρ)− [ρ]pF ).

Then the above discrete energy balance equation (16) remains valid after
replacing [ρ]p by [ρ].
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Recall that the regularized shallow water equations for an uneven
bottom form an important particular case of the above regularized
barotropic Euler system of equations with the potential body force, namely
for p(ρ) = p1ρ

2 = 0.5gρ2, Φ = −gb with g = const > 0,
but now ρ = h has the physical sense of the depth of water measured
from the bottom mark b = b(x). In this case the above method

∂tρ+ δ∗j = 0,

∂t(ρu) + δ∗(j[u] + [p]) = δ∗Π + [ρ∗(−gδb)]∗

is simplified essentially and contain the terms

j = [ρ]([u]− w), w = ŵ +
τ

[ρ]
[u]δ(ρu),

ŵ = τ([u]δu+ gδρ+ gδb) = τδ
(
g(ρ+ b) + 0.5u2

)
,

Π = νδu+ [ρ][u]ŵ + τg[ρ]δ(ρu);

remind that
[ρ]p = [ρ], p̃′(ρ) = 2p1[ρ] for γ = 2.
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Inserting the formula for ŵ into the formula for w gives

w =
τ

[ρ]

(
2[ρ][u]δu+ [u]2δρ

)
+ τgδ(ρ+ b).

Previously by other authors (O. Bulatov, T. Elizarova) another formula, in
an equivalent form:

w =
τ̂

[ρ]
δ(ρu2) + τ̂ gδ(ρ+ b),

was used, with τ̂ = [τ ] (where τ was defined on the main mesh). Since

δ(ρu2) = 2[ρ][u]δu+ [u2]δρ, but [u]2 6≡ [u2]

the two formulas for w are not identical (though our formula for Π and the
formula of that authors are equivalent).
Importantly, in this case the above equality for the equilibrium solution
takes the simplest form

ρS + b = C1 on ω̄h, with C1 = const.

Thus the method is the well-balanced.
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The above discrete energy balance equation (16) is also simplified and
looks like

∂t
(
g(ρ+ b)2 + 0.5ρu2

)
+ δ∗ {j (g(ρ+ b) + 0.5u−u+)−Πu+Bh}

+
[
ν(δu)2 + τg {δ(ρu)}2 + τ [ρ]{[u]δu+ gδ(ρ+ b)}2

]∗
= 0;

remind that Bh = −0.25h2
+(δp− ρ∗δΦ)δu.

Remind that actually ρ = h is the water depth and recall that the often
appearing above quantity H = ρ+ b is the water level.
For solving the inviscid shallow water system, the viscous and relaxation
terms are considered as artificial regularizers with µ and τ in the form

µ =
4

3
τ [p] or µ = 0, τ = α

h

c
, c =

√
g[h] on ω∗h; 0 < α < 1,

where c is like the velocity of sound and h is the constant spatial step.
We apply the explicit Euler scheme in time, and to satisfy a stability
condition of the CFL type, choose the time step ∆t at the current time as

∆t = β min
16i6N

h

|[u]i−1/2|+ ci−1/2
, 0 < β < 1.
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We consider a channel of the length X=25 m with a flat bottom except for
the small hump of the parabolic shape in its middle part:

b(x) =

{
0.2− 0.05(x− 10)2, 8 m 6 x 6 12 m

0, otherwise.

Initially the water level is constant: H0(x) ≡ CH , and the flow is at rest.
The left boundary conditions are hu|x=0 = Chu for the discharge together
with the open boundary condition for h, and the right boundary conditions
are H|x=X = CH (in general, up to a certain time moment) together with
the open boundary condition for u.
This problem may seem simple but only at first glance. There are three
types of flows in it: subcritical, transcritical and supercritical depending
on values of the flow parameters. Below examples of all of them are
considered. Results of computations are presented at tfin=200 s (when the
flows become stationary for the chosen values of the parameters).
For these flows, the exact discharge at the final time is known: hu ≡ Chu.
As a rule, namely the computation of hu causes difficulties.
The results are accurate enough for N listed below; they are comparable
with those obtained in other papers.
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(a) Subcritical flow. This is the simplest type of flows. Here CH=2 m and
Chu=4.42 m2/s are taken. At tfin, the water level is almost flat with only a
small cavity above the hump.
We select α=0.9, β=0.2 and µ=0. Fig. 1 shows the water level H and the
discharge hu for N=400. In the vicinity of the hump edges, “hubbles” of
hu values are observed (damping as N increases) but the absolute error in
the discharge Eabs := max

06i6N
|(hu)i − Chu| ≈ 7.375e-5 is small.

100 200 300 400
0

1

2

2.5 H

100 200 300 400
4.418

4.42

4.422 hu

Figure 1: Subcritical flow over the hump: H and hu at tfin = 200 s
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(b) Transcritical flow. Here CH=0.66 m and Chu=1.53 m2/s are chosen.
For this and the next types of flows, the right boundary condition
H(X, t) = CH is posed only for t 6 40 s whereas it is replaced by the open
boundary condition for h for t > 40 s. The behavior of the stationary water
level H exhibits much more sharp change.
We take α=0.9, β=0.1 and µ=0. Fig. 2 shows the level H and the
discharge hu at N=400. Once again there are “hubbles” of hu values over
the hump edges (damping as N increases) but Eabs ≈ 9.882e-5 is small.

100 200 300 400
0

0.5

1

1.25 H

100 200 300 400
1.529

1.53

1.531 hu

Figure 2: Transcritical flow over the hump: H and hu at tfin = 200 s
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(c) Supercritical flow. Here CH=0.33 m and Chu=0.18 m2/s are taken.
Now the behavior of the stationary water level H is strongly non–monotone
(its graph over the hump has a narrow sharp hollow) and more complicated.
We take α=0.8, β=0.1 and N=800. The presence of the Navier–Stokes
–type viscosity (µ 6= 0) is essential namely in this case; the stable
computations are impossible without it. From Fig. 3, we see that hu is
now computed worse, see a sharp oscillation near the right edge of the
hump. Now Eabs ≈ 0.0266 is much worse than in the previous two cases.

200 400 600 800
0

0.2

0.4

0.5 H

200 400 600 800

0.12

0.18

0.24

hu

Figure 3: Supercritical flow over the hump: H and hu at tfin = 200 s
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Finally, in Fig. 4 we present the behavior of the mean total energy

E(tot) =
1

N
(0.5e0 +

N−1∑
i=1

ei + 0.5eN ), e = 0.5g
{

(h + b)2 + hu2
}

in time in all the cases (a), (b) and (c).
To simplify comparison, we take N=100 and the uniform mesh in t.
We observe the stabilization of E(tot) after one or several oscillations (with
no any purely numerical oscillations).
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Figure 4: The flow over the hump in cases (a)-(c): the mean total energy E(tot)

in time
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The regularized (quasi-gasdynamic) Euler 1D system of equations consists
of (due to B. Chetverushkin and T. Elizarova)
the mass balance equation

∂tρ+ ∂xj = 0,

the momentum balance equation

∂t(ρu) + ∂x(ju+ p) = ∂xΠ +
(
ρ−τ∂x(ρu)

)
F,

the total energy balance equation

∂tE + ∂x{(u−w)(E + p)} = −∂xq + ∂x(Πu) + ρ(u−w)F +Q.

The unknown functions ρ > 0, u and E = 0.5ρu2 + ρε are the density,
velocity and total energy of the gas.
We consider the perfect polytropic gas having the state equations

p = (γ − 1)ρε, ε = cV θ, with γ > 1, cV > 0.

The functions p, ε and θ > 0 are the pressure, internal energy and absolute
temperature.
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The main equations involve the mass flux with the density

j = ρ(u−w),

w = ŵ +
τ

ρ
u∂x(ρu), ŵ =

τ

ρ
(ρu∂xu+ ∂xp− ρF )

the viscous stress

Π = ν∂xu+ρuŵ + τ {u∂xp+ γp∂xu− (γ − 1)Q}

and the heat flux (with the minus sign)

−q = κ∂xθ+τ
{
ρu2

(
∂xε−

p

ρ2
∂xρ

)
− uQ

}
.

Here ν = ν(ρ, θ), κ = κ(ρ, θ) and τ = τ(ρ, θ) are the viscosity, the heat
conductivity and a relaxation parameter (having the dimension of time).
Also F and Q > 0 are the body force density and the heat source strength.
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Comments. 1. For ν = ν(ρ, θ) > 0, κ = κ(ρ, θ) > 0 and τ = τ(ρ, θ) > 0
the regularized Euler (QGD) system of equations has the Petrovskii
parabolic type.

2. For ν = ν(ρ, θ) > 0, κ = κ(ρ, θ) > 0 and τ = 0, one gets the
compressible Navier-Stokes system of equations (the viscous
heat-conducting gas) having the composite hyperbolic-parabolic type.

3. For ν = 0, κ = 0 and τ = 0, one gets the Euler system of equations
(the inviscid non-heat-conducting gas) having the hyperbolic type.
All the three cases are covered in this report.

4. The specific coefficients are exploited to solve the Euler system of
equations numerically:

ν = τpSc, κ = τp
γSc
cV Pr

, τ = α
h

c
,

where Sc > 0 and Pr > 0 are the Schmidt and Prandtl numbers,
c =

√
γ(γ − 1)ε is the speed of sound while h is the mesh size and

0 < α < 1 is a parameter.
A. Zlotnik (NRU HSE, Moscow) Numerical methods for gas dynamics 28-31 October 2017 35 / 63



The internal energy balance equation

∂t(ρε) + ∂x(jε) = −∂xq + Π∂xu− p∂x(u−w)+w∂xp− ρŵF +Q.

The entropy of the perfect polytropic gas is defined by

s = −k ln ρ+ cV ln θ, with k = (γ − 1)cV .

One can derive the entropy balance equation

∂t(ρs) + ∂x(js) = ∂x

(
−q
θ

)
+

κ(∂xθ)
2

θ2
+
ν(∂xu)2

θ
+
ρŵ2

τθ

+
τk

ρ
{∂x(ρu)}2 +

τcV ρ

θ2

{
(γ − 1)θ∂xu+ u∂xθ −

Q

2cV ρ

}2

+
Q

θ

(
1− τQ

4ρε

)
.

The sum of all terms on the right, except the first divergent one, represents
the entropy production. Its first five terms are always nonnegative; the
last term is nonnegative if τQ 6 4ρε.
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We use a uniform mesh ω̄h on [0, X] with the nodes xi = ih, 0 6 i 6 N
and the step h = X/N
and the auxiliary mesh ω∗h with the nodes xi = (i+ 1/2)h, 0 6 i 6 N − 1.
Define the mesh-averaging, argument-shift and difference quotient
operators

[v]i+1/2 = 0.5(vi + vi+1), (v±)i+1/2 = vi+1/2±1/2, δvi+1/2 =
vi+1 − vi

h
,

[y]∗i = 0.5(yi−1/2 + yi+1/2), δ∗yi =
yi+1/2 − yi−1/2

h
,

where v ∈ H(ω̄h) and y ∈ H(ω∗h).
Thus [·], (·)±, δ: H(ω̄h)→ H(ω∗h)
while [·]∗, δ∗: H(ω∗h)→ H(ωh) with ωh = {xi; 1 6 i 6 N − 1}.

A. Zlotnik (NRU HSE, Moscow) Numerical methods for gas dynamics 28-31 October 2017 37 / 63



Several different counterparts of the product rule are valid:

δ(uv) = δu · [v] + [u]δv,

δ∗(y[v]) = δ∗y · v + [yδv]∗,

δ∗
(
[u][v]− 0.25h2δu · δv

)
= δ∗[u] · v + uδ∗[v],

where u ∈ H(ω̄h). Hereafter, for example, δu · [v] = (δu)[v] (i.e., the sign ·
terminates the action of the preceding operators from the left).
Additional useful formulas

[y]∗v =
[
y[v]

]∗ − 0.25h2δ∗(yδv),

[uv] = [u][v] + 0.25h2δu · δv.
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The semidiscrete mass, momentum and total energy balance equations are

∂tρ+ δ∗j = 0,

∂t(ρu) + δ∗(j[u] + [p]) = δ∗Π,

∂tE + δ∗
{

([u]− w)([E]2 + [p])− 0.25h2δu · δp
}

= δ∗(−q + Π[u]) + [Q]∗

on ωh (for F = 0), with the pressure, total energy and internal energy

p = (γ − 1)ρε, E = 0.5ρu2 + ρε, ε = cV θ.

The discretizations of the mass flux density

j = [ρ]ln([u]− w), w = ŵ +
τ

[ρ]
[u]δ(ρu), ŵ =

τ

[ρ]
([ρ][u]δu+ δp)

the viscous stress and the heat flux (with the minus sign)

Π = νδu+ [ρ][u]ŵ + τ {[u]δp+ γ[p]1δu− (γ − 1)Q} ,

−q = κδθ + τ

{
[ρ][u]2

(
δε− [p]1

[ρ]2
δρ

)
− [u]Q

}
.
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The basic unknown functions ρ > 0, u, E together with p, ε, θ > 0 are
defined on ω̄h while j, w, ŵ, Π, q, τ , ν, κ, Q are defined on ω∗h.
The standard arithmetic averages [ρ], [u], [p] are combined with the

nonstandard ones for ρ, p, E, ε: [ρ]ln =
1

ln(ρ−; ρ+)
; remind that ln(α;β)

is the divided difference for the logarithmic function

ln(α;β) =
lnβ − lnα

β − α
for α 6= β, ln(α;α) =

1

α
, α > 0, β > 0

[p]1 = (γ − 1)[ρ][ε]

[E]2 = 0.5[ρ]lnu−u+ + [ρ]ln[ε]3, where u−u+ is the geometric mean for u2

[ε]3 = ln
(

1
ε−; 1

ε+

)
= ε−ε+ ln(ε−; ε+),

For β/α ≈ 1, to ensure the computational stability, the formulas should be
approximated, for example, by the Simpson formula

ln(α;β) =

ˆ 1

0

1

(1− α)s+ βs
ds ≈ 1

6α
+

4

3(α+ β)
+

1

6β
.
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The entropy balance equation is based on the mass and internal energy
balance ones. We multiply the momentum equation by u. We exploit

∂t(ρu) · u = 0.5∂t(ρu
2) + 0.5∂tρ · u2,

the mass balance equation and the second difference product rule and get

∂tρ · u2 = −δ∗j · u2 = −δ∗(j[u2]) + [jδ(u2)]∗,

δ∗(j[u]) · u = δ∗(j[u]2)− [j[u]δu]∗.

Taking into account the equalities

[u]2 = 0.5[u2] + 0.5u−u+, 0.5δ(u2) = [u]δu,

we derive the kinetic energy balance equation

0.5∂t(ρu
2) + 0.5δ∗(ju−u+) + δ∗[p] · u = δ∗Π · u.
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Subtracting the last equation from the total energy balance equation and
by the difference product rules get

δ∗
(
[u][p]− 0.25h2δu · δp

)
= δ∗[u] · p+ δ∗[p] · u,

δ∗(w[p]) = δ∗w · p+ [wδp]∗, δ∗(Π[u]) = δ∗Π · u+ [Πδu]∗.

Thus the following internal energy balance equation holds:

∂t(ρε) + δ∗(j[ε]3) = −δ∗q + [Πδu]∗ − pδ∗([u]− w) + [wδp]∗ + [Q]∗.

At this stage, the form of u−u+ and the additional summand 0.25h2δu · δp
in the term [E]2 have already played their role: the kinetic and internal
energy balance equations contain no mesh imbalances.
But the particular form of [ρ]ln, [p]1, [ε]3 have not yet been used and they
could be arbitrary.
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Theorem (the discrete entropy balance equation)
For the above spatially discrete method, the following entropy balance
equation holds:

∂t(ρs) + δ∗(j[s])

= δ∗
(
−q
[

1

θ

]
+Bh

)
+

[
κ(δθ)2

θ−θ+
+
ν[θ](δu)2

θ−θ+
+

[ρ][θ]

τθ−θ+
ŵ2

+
τk[θ]2

[ρ]θ−θ+
{δ(ρu)}2 +

τcV [ρ]

θ−θ+

{
[u]δθ + (γ − 1)[θ]δu− Q

2cV [ρ]

}2

+
[θ]

θ−θ+
Q

(
1− τQ

4[ρ][ε]

)]∗
.

Here, the first five terms in the entropy production (under the sign [·]∗) are
always nonnegative while the last term is nonnegative if τQ 6 4[ρ][ε].
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Let us turn to derivation of the entropy balance equation. According to the
definition of the entropy

∂t(ρs) = ∂tρ ·s+ρ

(
−k
ρ
∂tρ+

cV
θ
∂tθ

)
= ∂tρ ·s−(k+cV )∂tρ+∂t(ρε) ·

1

θ
.

Combining the mass balance equation and δ∗(j[s]) = δ∗j · s+ [jδs]∗ yields

∂t(ρs) + δ∗(j[s]) = [jδs]∗ + ∂t(ρε) ·
1

θ
+ (k + cV )δ∗j.

Since

δ∗
(
j[ε]3

[
1

θ

])
=

[
j[ε]3δ

1

θ

]∗
+ δ∗(j[ε]3) · 1

θ
,

we can write

∂t(ρs) + δ∗(j[s]) =

[
j

(
δs+ [ε]3δ

1

θ

)]∗
+ {∂t(ρε) + δ∗(j[ε]3)} 1

θ

+δ∗
{
j

(
k + cV − [ε]3

[
1

θ

])}
.
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Applying the equalities

δs = −kδ ln ρ+ cV δ ln θ = −k ln(ρ−; ρ+)δρ+ cV ln(ε−; ε+)δε

and elementary formulas

δ
1

θ
= − δθ

θ−θ+
,

[
1

θ

]
=

[θ]

θ−θ+
,

we transform the first term

j

(
δs+ [ε]3δ

1

θ

)
= −[ρ]ln([u]− w)k ln(ρ−; ρ+)δρ

+j

(
c2
V ln(ε−; ε+)− [ε]3

1

θ−θ+

)
δθ = −k([u]− w)δρ,

Namely the validity of the last so simple equality is ensured by the above
choice of [ρ]ln and [ε]3.
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Let us transform the second term. By virtue of the internal energy balance
equation and the previous difference formulas

{∂t(ρε) + δ∗(j[ε]3)} 1

θ

= −δ∗([u]− w) · kρ− δ∗q · 1

θ
+ [Πδu+ wδp+Q]∗

1

θ

=

[
k([u]− w)δρ+ qδ

1

θ
+ (Πδu+ wδp+Q)

[
1

θ

]]∗
−δ∗

{
k([u]− w)[ρ] + q

[
1

θ

]
+ 0.25h2(Πδu+ wδp+Q)δ

1

θ

}
.
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Consequently from above formulas and definitions of q and Π we derive

∂t(ρs)+δ∗(j[s]) = δ∗
(
−q
[

1

θ

]
+Bh

)
+

[
κ(δθ)2

θ−θ+
+
ν[θ](δu)2

θ−θ+
+

A

θ−θ+

]∗
,

where the term [. . . ]∗ represents the entropy production, with

A := τ

{
[ρ][u]2

(
δε− [p]1

[ρ]2
δρ

)
− [u]Q

}
δθ

+
{(

[ρ][u]ŵ + τ([u]δp+ γ[p]1δu− (γ − 1)Q)
)
δu+ wδp+Q

}
[θ],

Bh := kj

(
1− [ρ]

[ρ]ln

)
+ cV j

(
1− [ε]3

[
1

ε

])
− 0.25h2(Πδu+ wδp+Q)δ

1

θ
.
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Let us show that A > 0.
Let us divide A into the sum of terms containing multipliers ŵ и w, other
terms without the multiplier Q and the terms involving Q:

A = [θ]A′ + τA′′ − τ {[u]δθ + (γ − 1)[θ]δu}Q+ [θ]Q.

The terms of A′ are rearranged as follows:

A′ ≡ [ρ][u]ŵδu+ wδp = ŵ[ρ][u]δu+

(
ŵ +

τ

[ρ]
[u]δ(ρu)

)
δp

= ŵ([ρ][u]δu+ δp) +
τ

[ρ]
[u]δ(ρu) · k(δρ · [θ] + [ρ]δθ)

=
[ρ]

τ
ŵ2 +

τk[θ]

[ρ]
δ(ρu) · δρ · [u] + τk[u]([ρ]δu+ [u]δρ)δθ,

where the simplest difference product rule has been used twice.
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Next, the terms A′′ are regrouped so that

A′′ ≡ [ρ][u]2
(
δε− [p]1

[ρ]2
δρ

)
δθ +

(
[u]δp+ γ[p]1δu

)
δu · [θ]

= cV [ρ]([u]δθ)2 − k[θ][u]2δρ · δθ

+k[u](δρ · [θ] + [ρ]δθ])δu · [θ] + γk[ρ]([θ]δu)2

= cV [ρ]([u]δθ)2 − k[θ][u]2δρ · δθ

+k[θ]2(δρ · [u] + [ρ]δu)δu+ k[ρ][u]δu · [θ]δθ

+cV (γ − 1)2[ρ]([θ]δu)2

since γk = k + cV (γ − 1)2.
In the last transformations an important role has been played by the form
of [p]1 in the expressions for the viscous stress and the heat flux.
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Thus the following terms are rearranged into a sum of squares:

[θ]A′ +A′′ =
[ρ][θ]

τ
ŵ2 +

τk[θ]2

[ρ]
δ(ρu) ·

(
δρ · [u] + [ρ]δu

)
+τ
{
cV [ρ]([u]δθ)2 + 2k[ρ][u]δu · [θ]δθ + cV [ρ]((γ − 1)[θ]δu)2

}
=

[ρ][θ]

τ
ŵ2 +

τk[θ]2

[ρ]
{δ(ρu)}2 + τcV [ρ]

{
[u]δθ + (γ − 1)[θ]δu

}2
.

Finally, taking into account the terms with Q, we pass to the discrete
entropy balance equation.
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Comments. 1. As in the differential case, the entropy production remains
nonnegative for ν(ρ, ε) > 0, κ(ρ, ε) > 0 and τ(ρ, ε) > 0 since the third
summand under the sign [·]∗ can be rewritten in the form

τ [θ]

[ρ]θ−θ+
([ρ][u]δu+ δp)2.

2. The additional term δ∗Bh (absent in the differential case) is a divergent
difference imbalance. Clearly Bh = O(h2) for continuous functions ρ > 0,
u and θ > 0 with bounded derivatives ∂2

xρ, ∂xu and ∂2
xθ and for bounded

τ , ν and Q.

3. The first two terms in Bh appear since [ρ]ln and [ε]3 are used instead of
the simplest [ρ] and [ε]. Otherwise, they disappear but instead such
additions to the entropy production arise that one cannot any more
guarantee its nonnegativity.

4. The results are generalized for an arbitrary non-uniform mesh ω̄h on
[0, X].
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For comparison, we consider also the more standard discretization of the
regularized system (for F = 0) (T. Elizarova and E. Shilnikov).
Its basic equations are (the differences are marked in green)

∂tρ+ δ∗j = 0,

∂t(ρu) + δ∗(j[u] + [p]) = δ∗Π,

∂tE + δ∗ {([u]− w)([E] + [p])} = δ∗(−q + Π[u]) +Q

on ωh, with p, E and ε related by the previous standard relations. In
contrast to above, Q is defined on ω̄h.
The additional relations are

j = [ρ]([u]− w), [E] = 0.5[ρ]0[u]2 + [ρε],

w =
τ

[ρ]
δ(ρu2 + p), ŵ =

[τ ]

[ρ]
([ρ][u]δu+ δp),

Π = νδu+ [ρ][u]ŵ + τ([u]δp+ γ[p]δu− (γ − 1)[Q]),

−q = κδθ + τ

{
[ρ][u]2

(
δε+ [p]δ

1

ρ

)
− [u][Q]

}
on ω∗h.A. Zlotnik (NRU HSE, Moscow) Numerical methods for gas dynamics 28-31 October 2017 52 / 63



Theorem (the standard discrete entropy balance equation)
For the standard spatially discrete method, the following entropy balance
equation holds:

∂t(ρs) + δ∗(j[s]) = δ∗
{
−q
[

1

θ

]
− αh

[
1

θ

]
+ βh

}
+

[
κ(δθ)2

θ−θ+
+
ν[θ](δu)2

θ−θ+
+

[ρ][θ]

τθ−θ+
ŵ2 +

τk[θ]2

[ρ]θ−θ+
{δ(ρu)}2

+
τcV [ρ]

θ−θ+

{
[u]δθ + (γ − 1)[θ]δu− [Q]

2cV [ρ]

}2

+
[θ]

θ−θ+
[Q]

(
1− τ [Q]

4[ρ][ε]

)
+ ξh +

τζh
θ−θ+

]∗
,

where αh, βh, ξh and ζh are imbalance terms of indefinite signs.
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The precise expressions for the imbalance terms are rather complicated:

αh = 0.25h2
+

{
0.5j(δu)2 + δu · δp

}
,

βh = cV j

(
1− [ρε]

[ρ]

[
1

ε

])
− 0.25h2

+

{
(Πδu+ wδ)δ

1

θ
+ δ

Q

θ

}
,

ξh = kj

(
1− [ρ]

[ρ]ln

)
δρ+ j

(
[ρε]

[ρ]
− [ε]3

)
δ

1

θ
+ αhδ

1

θ
+ 0.25h2

+δQ · δ
1

θ
,

ζh = (γ − 1)[u]2
(

[ε]− [ρ][ρε]

ρ−ρ+

)
δρ · δθ + γ(γ − 1)([ρε]− [ρ][ε])(δu)2[θ]

+
1

[ρ]
([ρu]− [ρ][u])δu · δp · [θ].

The following error estimate holds:

|αh|+ |βh|+ |ξh|+ |ζh| = O(h2
max)

for continuous ρ > 0, u, θ > 0 and Q with bounded derivatives ∂xρ, ∂xu,
∂xθ and ∂xQ.
However, the methods are mainly used to compute discontinuous solutions.
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Test 1: The Sod problem
In all the tests, we apply the method to solve the Euler system of equations.
We exploit the simplest explicit approximation in time (excepting test 3,
where we take the second order explicit midpoint approximation).
Test 1. A version of the Sod problem. The resulting flow involves all the
characteristic features of supersonic flows: sonic points at the boundaries
of a rarefaction wave, a contact discontinuity and a shock wave. Here the
computational domain is [−0.5, 0.5], γ = 1.4, and the initial data are

ρ0(x) =

{
1, x 6 0

0.125, x > 0
, p0(x) =

{
1, x 6 0

0.1, x > 0
, u0(x) =

{
0.75, x 6 0

0, x > 0

We take tfin = 0.2, N = 400, α = 0.4 and the time step

∆t = βmin
i

h

|ui|+ ci

with β = 0.2.
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Figure 5: The Sod problem
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Test 2: Two opposite rarefaction waves
The flow represents two rarefaction waves that propagate away from the
center of the domain. The difficulty in the numerical solution of this
problem is that the gas density and pressure at the center (between the
diverging flows) are very low, while the internal energy ε does not tend to
zero.
P.R. Woodward and P. Colella: “It seems that there are no difference
schemes in the Eulerian variables that describe the behavior of the internal
energy in this problem with high accuracy.”
Here the computational domain is [−0.5, 0.5], γ = 1.4 and the initial data
are

ρ0(x) = 1, p0(x) = 0.4, u0(x) =

{
−2, x 6 0

2, x > 0
.

We take tfin = 0.15 together with N = 500, α = 0.018 and β = 0.09.
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Figure 6: Two opposite rarefaction waves (results for the standard QGD scheme,
N=2000)

A. Zlotnik (NRU HSE, Moscow) Numerical methods for gas dynamics 28-31 October 2017 58 / 63



Figure 7: Two opposite rarefaction waves (results for the new scheme, N=500)
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Test 3: The Noh problem
The flow is formed by the colliding of two hypersonic flows of a cold dense
gas. As a result, two diverging “infinitely strong” shock waves are formed
between which there remains a stationary gas with a constant density and
pressure. Indeed, according to the initial conditions, the speed of sound
against the unperturbed background is c = 0.0013. The velocity of the
wave propagation is 1; i.e., the Mach number is large M = uL

c = 775.
(Actually the maximum Mach number reached in the terrestrial conditions
is around 30.)
Here the computational domain is [−0.5, 0.5], γ = 5/3 and the initial data
are

ρ0(x) = 1, u0(x) =

{
−1 for x 6 0

1 for x > 0
, p0(x) = 10−6.

We take tfin = 1 and N = 500, α = 0.4, β = 0.03. This β is 30 better,
i.e. the time step is 30(!) larger, than for the standard scheme.

A. Zlotnik (NRU HSE, Moscow) Numerical methods for gas dynamics 28-31 October 2017 60 / 63



Figure 8: The Noh problem
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