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The equation

We present certain problems related to the controllability of the
following (GP) equation (after Gurtin and Pipkin (1966))

w ′ =

∫

t

0
N(t−s)∆w(s) ds ,







w(x , 0) = w0(x) ∈ L2(Ω) ,
w(x , t) = f (x , t) if x ∈ Γ ⊆ Ω ,
w(x , t) = 0 if x ∈ ∂Ω \ Γ

where w = w(x , t) with t > 0 and x ∈ Ω, a region with C 2

boundary, N ∈ C 3 and N(0) > 0 .

N(t) is the “relaxation kernel”.
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Applications of this equation

Thermodynamics for materials with memory (w is the
temperature), viscoelasticity (w is the displacement) and
nonfickian diffusion (i.e. in the presence of complex molecular
structure: diffusion in polymers, absorption of drugs throughout
the skin. . . ) (w is the density).

For definiteness we call w the temperature but note that the
equation is a linearized version of a nonlinear process. So, w is the
perturbation of the temperature, not the absolute temperature.

We use the control f to control the temperature w(T ) at a
certain time T .

(Note: in fact, under suitable conditions we can even control the
pair (w(T ),w ′(T )) but here we ignore w ′(T ))
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Comments

In order to comply with the second principle of thermodynamics,
the kernel must satisfy certain “positivity” and monotonicity
conditions (Day, Fabrizio, Amendola, Gentili, Giorgi. . . ) which are
not used in the study of controllability. We only use N(t) smooth
on [0,+∞) and N(0) > 0 (for simplicity we normalize the time so
to have N(0) = 1).

While use of (GP) in viscoelasticity is not debated, whether
it can be accepted to model thermodynamic processes is an
issue which is still much debated in physics journals. In par-
ticular negative (perturbations of the) temperature may appear
when solving (GP), a difficulty which is solved by passing to the
second order approximation of the nonlinear problem (Fabrizio,
Colemann, Owens).
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The solutions

It turns out that there exists a unique solution
w ∈ C ([0,T ]; L2(Ω)) ∩ C 1([0,T ];H−1(Ω)) which depends
continuously on

(w0, f ) ∈ L2(Ω)× L2(0,T ; L2(∂Ω)) .

If f = 0, w0 ∈ H1
0 (Ω) then

w ∈ C ([0,T ];H1
0 (Ω)) ∩ C 1([0,T ]; L2(Ω))

and depends continuously on

w0 ∈ H1
0 (Ω) .
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Comparison with the wave/heat equation

First we note that the equation can be written as

w ′′ = ∆w +

∫

t

0
M(t − s)∆w(s) ds , M(t) = N ′(t)

((w(0),w ′(0)) ∈ L2(Ω)× H−1(Ω)).

Special cases

N(t) ≡ 1 gives the
wave equation

w ′′ = ∆w ;

N(t) = e−t/τ gives
the telegrapher’s
equation

w ′′ +
1

τ
w ′ = ∆w

(1/τ =Relaxation
time).

If N(t) = Nk(t) =
ke−kt then Nk(t) ⇀
δ(t) and the equation
with memory approxi-
mates the heat equa-
tion.
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Comparison of (GP), wave and heat equations

We solve the wave, (GP) and heat equations on (0, π) with zero
boundary conditions and initial datum (green in the left plot)

ξ(x) =

{

1 if
π
2 − 0.1 < x < π

2 + 0.1
0 otherwise.

The left plot compare the solution at time T = 2.5 of the wave
equation (blue) (zero initial velocity) and of the (GP) equation

(red) when N(t) = e−kt k = 4 , 4/2 , . . . , 4/9.
The plot on the right compare the solution of the heat equation

(blue) with those of (GP) when N(t) = ke−kt

k = 4 , 8 , 12 , . . . , 36.

u

x
π0

x

u
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Solution in free space-no boundary of the domain,

N(t) = e−kt

x

w

t

w

t

w

The solution of (GP) has a jump (a “forward wavefront”, in the
direction of the wave) as the wave equation. It does not have a
wave front “backward” as the wave equation does.

The heat equation does not have wavefronts at all.

The presence of the wavefront suggests that the control
properties of (GP) cannot mimic those of the heat equa-
tion. We conjecture that the controllability properties of
(GP) mimic those of the wave equation.
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The result

Theorem: Let the wave equation be controllable in time T (i.e.
uf (T ) —solution of the wave equation controlled by f — can reach
any ξ ∈ L2(Ω) for a suitable f ) and let ǫ > 0. For every ξ ∈ L2(Ω)

there exists f such that w f (T + ǫ) = ξ (w f solves (GP) ,

controlled by f ).

Different proofs, in more or less general cases:

◮ Fourier expansion of the solution (Leugering 1984)

◮ observation inequality and HUM method (Kim 1993)

◮ Carleman estimates (interior controls) (Zhang and coworkers
2005)

◮ operator and moment methods (L.P. and coworkers ≥ 2004)

Here we sketch applications of operator-moment methods to
control, source identification and the identification of the
relaxation kernel.
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Expansion in eigenfunctions

Let {φn} be an orthonormal basis of L2(Ω) of eigenvectors of the
Laplacian with homogeneous Dirichlet boundary condition (−λ2

n is
the eigenvalue of φn). Then we have

w(x , t) = w f (x , t) = −

+∞
∑

n=1

φn(x)wn(t)

where (γ1 exterior normal derivative)

wn(t) =

∫

Γ

∫

t

0
(γ1φn)

[
∫

s

0
N(s − τ)zn(τ) dτ

]

f (x , t − s) ds dΓ .

The function zn(t) solves

zn
′ = −λ2

n

∫

t

0
N(t − s)zn(s) ds , zn(0) = 1 .
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Moment problem and controllability

It is possible to hit any L2(Ω) target if and only if the following
Moment Problem is solvable for every complex sequence {cn} ∈ l2:

∫

T

0

∫

Γ

(

γ1φn

λn

)[

λn

∫

s

0

N(s − τ )zn(τ ) dτ

]

f (x ,T − s) dΓ ds = cn

Fact: the moment operator i.e. the transformation

f 7→ Mf =

{∫

T

0

∫

Γ

(

γ1φn

λn

)[

λn

∫

s

0

N(s − τ )zn(τ ) dτ

]

f (x ,T − s) dΓ ds

}

is continuous from L2(0,T ; L2(Γ)) to l2.
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Controllability and Riesz sequences

Continuity of M implies that M is surjective (i.e. controllability
holds) if and only if

{(

γ1φn

λn

)[

λn

∫

s

0
N(s − τ)zn(τ) dτ

]}

is a a Riesz sequence in L2(0,T ; L2(Γ)).

A sequence {en} in a Hilbert space H is a Riesz sequence when it

can be transformed to an orthonormal basis of a (possibly
different) Hilbert space using a linear, bounded and boundedly
invertible transformation.
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The case of the wave equation

When N(t) ≡ 1 our equation is the wave equation

u′′ = ∆u , u = f on Γ , u = 0 on ∂Ω \ Γ

(and zero initial conditions). It is known that the wave equation is
controllable for T , Γ large enough. In the case of the wave
equation,

(

γ1φn

λn

)[

λn

∫

s

0
N(s − τ)zn(τ) dτ

]

=
γ1φn(x)

λn

sinλns

and so for suitable T and Γ
{

γ1φn(x)

λn

sinλns

}

is a Riesz sequence in L2(0,T ; L2(Γ)).
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The proof of controllability-1

The proof of controllability is quite technical and we skip it. The
idea is as follows.
Let w f (t) and uf (t) be the solutions of the (GP) and of the wave
equation with the same initial condition (say equal zero) and the
same control f . Let T be a control time of the wave equation, i.e.

{uf (T ) f ∈ L2(0,T ; L2(Γ))} = L2(Ω).

Then the map
f 7→ w f (T )− uf (T )

is compact and so

RT = {w f (T ) f ∈ L2(0,T ; L2(Γ))} ⊆ L2(Ω)

is closed and has finite codimension.
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The proof of controllability-2

In order to prove controllability, we use the properties of Riesz
sequences to prove that

[RT ]
⊥ = 0 .

This is achieved by comparing the sequences {en} and {ǫn}:

{

γ1φn(x)

λn
sinλns

}

={en}
{(

γ1φn
λn

)

[λn

∫

s

0 N(s−τ)zn(τ) dτ]
}

={ǫn}

and using the fact that {en} is a Riesz sequence, because the
wave equation is controllable.
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Comments

◮ It is possible to to prove controllability of the pair
(w(2T + ǫ),w ′(2T + ǫ)) (displacement,velocity) (in time
2T + ǫ)

◮ the arguments can be extended to different models in
viscoelasticity (three-dimensional viscoelasticity, viscoelastic
plates)

◮ when dimΩ = 1:
◮ It is possible to prove controllability of the pair

(w(2T + ǫ), q(2T + ǫ)) (temperature,flux)
◮ It is possible to prove controllability of the pair

(w ′(2T + ǫ), σ(2T + ǫ)) (velocity of displacement,traction)
and to study the control properties of (w(2T + ǫ), σ(2T + ǫ))
(deformation,traction).
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We sum up: important sequences

This arguments show a crucial role of the sequences

{(

γ1φn

λn

)[

λn

∫

s

0
N(s − τ)zn(τ) dτ

]}

and

{

γ1φn(x)

λn

zn

}

.

We are going to see the importance of these sequences in the
solution of certain inverse problems.

◮ source identification

◮ Identification of the relaxation kernel.
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How the sequence {zn} looks

As a preliminary information, it may be of interest to compare
zn(t) with cos nt for small and large n (we use
N(t) = (1/10)e−t/2 + (1/5)e−2t + (1/2)e−3t ):

t 

z 

π t π 

z 

Left: low frequences; Right high frequences

◮ A fact that has been known from almost two centuries: at
high frequences a viscoelastic material behaves very much like
an elastic material.

Lord Kelvin used this property of viscoelastic materials as a model
of the ether.
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Source reconstruction

The problem of the source reconstruction is as follows: a source of
heat, pullutant, drug,. . . adds energy, solute,. . . inside a body.

It is required to locate the position of such source using boundary
measures, usually of the flux (of heat, pollutant, drug,. . . )

This problem has been studied using several methods. We prove
that a method based on control ideas (first proposed for the wave
equation (Puel, Yamamoto, Grasselli)) can be extended to the
(GP) equation.
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The model of the internal source

w ′ =

∫

t

0
N(t − s)∆w(s) ds + b(x)σ(t) ,

w(0) = 0 , w(x , t) = 0 on ∂Ω .

b(x) is the source to be identified.

Often, b(x) is the characteristic function of a subregion of Ω and
σ(t) is constant (after a transient). The method can be used if we
know σ(t) differentiable with σ(0) 6= 0 and b ∈ L2(Ω). In fact, it is
sufficient to know a multiple of σ(t) to identify a multiple of b(x)
and this is all we need to locate the source.

Note that b(x) is not constant when the “intensity” of the source
is not uniform.
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The observation

We observe the flux on a part of the boundary, i.e.

∫

t

0
N(t − s)γ1w(x , s) ds , x ∈ Γ ⊆ ∂Ω .

At the expenses of a step of numerical differentiation, from this
measure we can reconstruct

y(x , t) = γ1w(x , t) , x ∈ ∂Ω .

We show that the Fourier coefficients of b(x) can be reconstructed
from y , if observed for a sufficiently long time.
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The space of the observation?

We may wonder in which space the observation y = y(x , t) lives.
It is possible to prove that

y ∈ L2(0,T ; L2(Γ))

(and it is a continuous function of b(x)σ(t) ∈ L1(0,T ; L2(Ω))).
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An example

Let us see a plot of the output y(t) when

◮ Ω = (0, π)

◮ the kernel is N(t) = 3e−t − 3e−2t + e−3t

◮ σ(t) = const (we choose σ(t) ≡ 1)

◮ b(x) is the characteristic function of ( (3/8)π, (5/8)π).

compared with the corresponding output of the string equation.

L. Pandolfi Systems with persistent memory



the flux of the wave equation and of the heat equation

with memory

We compare the outputs of (GP) (red) with that of the wave
equation (green)

ut =

∫

t

0
uxx(s) ds + b(x) (we recall, σ(t) ≡ 1).

y 

t 

(3/8)π (5/8)/pi 
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Observation

We note that (in this simple case) the output of the string
equation for t ∈ (0, π) precisely reproduces the “source” b(x)
while the output of (GP) is similar the output of the wave
equation, but distorted.

Source identification is possible if we can “undo” the distorsion.

It has an interest to see the reason behind the distorsion. Let us
separate the contribution of the low and high frequences both to
the string and (GP) equation. We see that the contribution of the
high frequences almost coincide while the distorsion is due to the
low frequences.
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Low and high frequences separated

Left: High frequences right: low frequencies

t 

y y 

t 

The reason: zn(t) ∼ cos nt if n >> 1: a second instance of the fact
that a viscoelastic material reacts to high frequency disturbances
like an elastic material, while the response is different at low
frequences!
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Fourier expansion

As above, let φn be an orthonormal basis of L2(Ω) with φn = 0 on
∂Ω and ∆φn = −λ2

nφn.
Let

bn =

∫

Ω
φn(x)b(x) dx

and, as above

z ′n = −λ2
n

∫

t

0
N(t − s)zn(s) ds , zn(0) = 1 .
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Accumulate the information on y

It is easily computed

w(x , t) =

+∞
∑

n=1

φn(x)

[

bn

∫

t

0
zn(t − s)σ(s) ds

]

y(x , t) =

+∞
∑

n=1

(γ1φn)

[

bn

∫

t

0
zn(t − s)σ(s) ds

]

Fix an interval [0,T ] and accumulate the information in y by
computing integrals

∫

Γ

∫

T

0
h(T − s)y(x , s) ds dΓ

(function h to be determined below).
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few manipulations

Few manipulations give the equality

∫

Γ

∫

T

0
h(x ,T − s)y(x , s) ds dΓ =

=

∫

Ω
b(x)

[

+∞
∑

n=1

φn

(
∫

Γ

∫

T

0
(γ1φn) zn(r)(h ∗ σ)(T − r) dr dΓ

)

]

dx

(∗ denotes the convolution).
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The conditions on σ

We know that σ is differentiable and σ(0) 6= 0. Then, for every
f ∈ L2(0,T ) there exists h such that

h ∗ σ =

∫

t

0
σ(t − s)h(s) ds =

∫

t

0
N(t − s)f (s) ds = N ∗ f .
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The conclusion

We insert this expression of h ∗ σ and we find the equality

∫

Γ

∫

T

0
h(x ,T − s)y(x , s) ds dΓ =

∫

Ω
b(x)w f (x ,T ) dx

where w f (t) be given by

w ′ =

∫

t

0
N(t − s)∆w(s) ds , w(0) = 0

w(x , t) = f (x , t) if x ∈ Γ ,

w(x , t) = 0 ifx ∈ ∂Ω \ Γ ,

a controlled (GP), with control f .
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Controllability and identification

Thanks to controllability at time T , we can choose f (and the
corresponding h) which forces the bracket to take any prescribed
value in L2(Ω) at time T . In particular, we choose h = hk such
that is equal to φk(x). With this function hk , we find

∫

T

0

∫

Γ
hk(x ,T − s)y(x , s) dΓ dt = bk =

∫

Ω
b(x)φk(x) dx

and so

b(x) =

+∞
∑

n=1

φn(x)

[
∫

T

0

∫

Γ
hk(T − s) (γ1w) (s) dΓ dt

]

.

This is the reconstruction of the unknown source b(x).
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Identification of the relaxation kernel

Source identification uses that the relaxation kernel N(t) is known.

The memory kernel N(t) and M(t) = N ′(t) are material properties
and only a qualitative behavior can be imposed from theoretical
considerations. In practice, the function N(t) has to be identified
on the basis of experimental measures taken on samples of the
material.

Kernel identification is a very important technical problem, much
studied both in mathematical and in engineering journals without
much interaction between these two worlds.
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Existing algorithms

◮ Mathematical literature: highly nonlinear algorithms for the
identification of the pair (N,w). These algorithms require the
solution of a system of nonlinear integrodifferential equations
in Hilbert spaces (Lorenzi, Grasselli, Kabanikin, Guidetti. . . ) .

◮ Engineering literature: N(t) is assumed to depend on “few
parameters”. In general N(t) is a Prony sum, i.e.
N(t) =

∑

αne
−βnt . The “real” parameters αn > 0, βn ≥ 0

are chosen by minimizing the (quadratic) discrepancy from
experimental measures and theoretical values of the output.
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Our goal: identification of the relaxation kernel using a

“linear algorithm”

”Linear algorithm”=an algorithm which inverts only linear
operators.

The algorithm uses two boundary measures but it is is linear and it
does not assume any special class of kernels, a part

◮ regularity

◮ N(0) > 0.
√

N(0)=velocity of propagation, easily measured.
So we can assume this measure already done and N(0)
normalized to N(0) = 1. Only for simplicity of presentation.

Fact: regularity rules out Abel kernels, i.e. combinations of
N(t) =

∑

αn/t
βn . Extension of the algorithm to this case is

possible, with different proofs.
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A warning

Only for simplicity we assume that we test a sample in the form of
a rod (say on (0, π)).

We take two measurements:

◮ first measurement: flux due to a nonzero initial temperature;

◮ second measurement: flux due to a nonzero boundary
temperature, applied to x = 0.

In both the cases the observed output is

q(t) =

∫

t

0
N(t − s)wx(π, s) ds = (flux at x = π)

(which is the flux with the sign changed).
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The flux due to the initial condition

We impose zero boundary conditions and initial condition ξ 6= 0.
Using the expansion in eigenfunctions we find

π

2
q(x , t) =

+∞
∑

n=1

ξn

[

n

∫

t

0
N(t − s)zn(s) ds

]

cos nx

= −

+∞
∑

n=1

1

n
ξnz

′
n(t) cos nx

L. Pandolfi Systems with persistent memory



the FIRST measurement
The flux due to a special boundary condition

choose ξ0(x) =
1

2
(π − x) =

+∞
∑

n=1

1

n
sin nx . Measure the flux at π:

this measurement provides the function:

K (t) = q(t) = −

+∞
∑

n=1

1

n2
(−1)nz ′n(t) .
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The boundary temperature

Impose null initial condition to a sample of the material, and
boundary condition

w(0, t) = f (t) , w(π, t) = 0 . Second measurement: Y f (t)
is minus the flux at π.

We assume

f (t) =

∫

t

0
g(s) ds , g ′(0) 6= 0 .

Note: the boundary temperature in practice cannot be arbitrary. In
particular it must be zero at t = 0 (since ξ = 0) and it must
“saturate”, as for example

f (t) = 1− e−t
or f (t) = 1−

1

t + 1
.
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the SECOND measurement

It turns out that the flux at x = π due to the temperature

f (t) =

∫

t

0
g(s) ds

is (minus) the output Y f (t) we get in the second measurement

π

2
Y f (t) =

∫

t

0
g(t − s)

(

K (s)−
1

2
N1(s)

)

ds

N1(t) =

∫

s

0
N(r) dr and (miracle!!) we already measured K (t).
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Conclusion

N1(t) =

∫

t

0
N(s) ds

is the solution of
∫

t

0
g(t − s)N1(s) ds = 2

∫

t

0
g(t − s)K (s) ds − πY f (t) :

The right hand side is known and so the computation of N1(t) is a
simple deconvolution. The computation of N(t) = N ′

1(t) is a
numerical differentiation.
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Warning

Deconvolution to compute N1(t) is simple but every algorithm
(Tikonov, Lavrentev,. . . ) amplifies the noise. So, the computation
of the numerical derivative N ′

1(t) = N(t) is not that simple.

But, the physics of the problem suggest several remedies: N(t)
must be positive decreasing (often convex) so that N1(t) is
positive increasing concave. Taking these properties into account
we can regularize the reconstruction of N1(t) for example using
averages on nearby steps.
We then use any algorith for numerical differentiation and we get
N(t).
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A toy simulation

Let the “unknown” relaxation kernel be the Prony sum

N(t) = (1/10)e−t/2 + (1/5)e−2t + (1/2)e−3t

(kernel of this form are often encountered in the Engineering
literature.)
We can (approximately) compute w(x , t) and the corresponding
fluxes due to the initial and boundary temperatures (plus an
artificial 1% error) and we can “reconstruct” N1(t) and N(t) from
these data.
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The plots

We present the plots of the “true” kernels N1(t) =
∫

t

0 N(s) ds and
N(t) versus their numerical reconstructions, using the algorithms
described above. This requires the solution of deconvolution
problems which are ill posed. So, we must relay on suitable
regularization. We used Lavrentev regularization for the
reconstruction of N1(t), followed by an averaging regularization
(since we know from physics that N(t) is increasing concave).
The reconstruction of N(t) from N1(t) requires a numerical
differentiation which we obtained in the most elementary way, by
fitting a polynomial to the reconstruction of N1(t).
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The “true” and reconstructed functions

Figure: Left: N1(t) (Lavrentev algorithm green, then regularized by
averaging); right: the relaxation kernel N(t) (red are the “true” plots).
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An apparent difficulty

In practice, there is no difficulty to impose even time varying
boundary temperature while it is essentially impossible to prescribe
a “strange” initial temperature. We must use a physically
realizable initial temperature in order to have a practical algorithm.

x 

ξ 

ξ=(1/2)(π−x) 

Luckily, the required initial temperature ξ (plot
on the left) is easily realizable by imposing two
different (constant) temperatures at the ends
of the bar, and waiting for the equilibrium.
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A variant and a warning: the model of Colemann-Gurtin

A related but different model which is also used in fluid dynamics is

wt = ∆w +

∫

t

0
N(r − s)∆w(s) ds .

This model has been first introduced by Jeffrey (1922) and more in
general by B.D Colemann and G. Gurtin (1967).

The controllability properties of this equation are very different
from those of (GP).
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The end

Thanks to the participants for the attention and
to the organizers for the kind invitation
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